
1 3

Theor Appl Genet (2014) 127:2679–2693
DOI 10.1007/s00122-014-2407-7

ORIGINAL PAPER

A genome-wide identification of chromosomal regions 
determining nitrogen use efficiency components in wheat 
(Triticum aestivum L.)

Fabien Cormier · Jacques Le Gouis · Pierre Dubreuil · 
Stéphane Lafarge · Sébastien Praud 

Received: 3 July 2014 / Accepted: 3 October 2014 / Published online: 19 October 2014 
© Springer-Verlag Berlin Heidelberg 2014

association study was carried out using 23,603 SNP with 
a mixed model for taking into account parentage relation-
ships among varieties. We identified 1,010 significantly 
associated SNP which defined 333 chromosomal regions 
associated with at least one trait and found colocalisations 
for 39 % of these chromosomal regions. A method based 
on linkage disequilibrium to define the associated region 
was suggested and discussed with reference to false posi-
tive rate. Through a network approach, colocalisations 
were analysed and highlighted the impact of genomic 
regions controlling nitrogen status at flowering, precocity, 
and nitrogen utilisation on global agronomic performance. 
We were able to explain 40 ± 10 % of the total genetic var-
iation. Numerous colocalisations with previously published 
genomic regions were observed with such candidate genes 
as Ppd-D1, Rht-D1, NADH-Gogat, and GSe. We high-
lighted selection pressure on yield and nitrogen utilisation 
discussing allele frequencies in associated regions.

Abbreviations
ADM_S	� Straw dry matter at maturity
DArT	� Diversity array technology
LD	� Linkage disequilibrium
FLO	� Flowering date
G	� Genotype
G × E	� Genotype × environment
GNY	� Grain nitrogen yield
GPC	� Grain protein content
GPD	� Grain protein deviation
GY	� Grain dry matter yield
HI	� Harvest index
KS	� Kernel per spike
N	� Nitrogen
%N_S	� Straw nitrogen content at maturity
NHI	� Nitrogen harvest index

Abstract 
Key message  This study identified 333 genomic regions 
associated to 28 traits related to nitrogen use efficiency 
in European winter wheat using genome-wide asso-
ciation in a 214-varieties panel experimented in eight 
environments.
Abstract  Improving nitrogen use efficiency is a key fac-
tor to sustainably ensure global production increase. How-
ever, while high-throughput screening methods remain at 
a developmental stage, genetic progress may be mainly 
driven by marker-assisted selection. The objective of this 
study was to identify chromosomal regions associated 
with nitrogen use efficiency-related traits in bread wheat 
(Triticum aestivum L.) using a genome-wide association 
approach. Two hundred and fourteen European elite varie-
ties were characterised for 28 traits related to nitrogen use 
efficiency in eight environments in which two different 
nitrogen fertilisation levels were tested. The genome-wide 
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NSA	� Straw nitrogen per area
NTA	� Total nitrogen in plant at maturity
NUE	� Nitrogen use efficiency
NUE_Prot	� Nitrogen use to protein efficiency
NupE	� Nitrogen uptake
NutE	� Nitrogen utilisation efficiency
NutE_Prot	� Nitrogen utilisation to protein efficiency
P	� P value
PH	� Plant height
QTL	� Quantitative trait locus
QTN	� Quantitative trait nucleotide
SA	� Spike per area
SNP	� Small nucleotide polymorphism
SSR	� Single sequence repeat
TKW	� Thousand kernel weight

Introduction

Global production of cereals has increased by around 
threefold since 1960 (FAO 2012) and is correlated with 
increased application of nitrogen (N) fertiliser. To date, the 
global growth in fertiliser demand is still positive as the 
demand for grain increases (FAO 2011). Thus, to sustain-
ably enhance worldwide cereal production, it is necessary 
to increase production per N fertiliser unit.

Nitrogen use efficiency (NUE) is defined as grain yield 
divided by the available nitrogen. In bread wheat (Triticum 
aestivum L.), genetic progress on NUE-related traits has 
been assessed in various studies (Ortiz-Monasterio et al. 
1997; Guarda et al. 2004; Muurinen et al. 2006; Cormier et 
al. 2013) and was mainly driven by selection on yield at a 
constant and high N level. This genetic progress should be 
at least maintained and preferably accelerated to deal with 
political, economic, and environmental concerns (Roth-
stein 2007; Pathak et al. 2011). Several promising ways to 
improve NUE have been proposed such as focusing on root 
architecture (Hirel et al. 2007; Foulkes et al. 2009; Kant 
et al. 2011) or on senescence and remobilisation (Gaju et 
al. 2011, Distelfeld et al. 2014). Although encouraging 
results have been obtained (Knyazikhin et al. 2013), phe-
notyping for NUE is still tedious as there are actually no 
high-throughput methods available (Manske et al. 2001; 
Tester and Langridge 2010). Moreover, G  ×  N interac-
tions have been observed on various agronomic traits (e.g. 
Le Gouis et al. 2000; Barraclough et al. 2010; Cormier et 
al. 2013) meaning that varieties may have to be tested in 
several N regimes. Thus, in a global context of fertiliser 
reduction, the ability to identify stable quantitative trait loci 
(QTL) controlling NUE-related traits and to implement this 
knowledge in breeding programs may condition a part of 
the future genetic gain. Various studies have already iden-
tified interesting quantitative trait loci (QTL) linked to N 

metabolism and response to N using biparental populations 
(e.g. An et al. 2006; Laperche et al. 2007; Habash et al. 
2007; Guo et al. 2012; Xu et al. 2013). Originally devel-
oped in animal and human genetics, genome-wide asso-
ciation study (GWAS) is now used in numerous studies in 
crop species. Although GWAS has provided useful results 
in dissecting complex traits in wheat such as yield and its 
components (e.g. Crossa et al. 2007; Neumann et al. 2011), 
and yield response to nitrogen (Bordes et al. 2013), to our 
knowledge, this study is the first GWAS on NUE and NUE-
related traits in small grain cereals.

GWAS overcomes the two main limitations suffered by 
biparental design of limited allelic diversity and poor map-
ping resolution due to limited recombination events dur-
ing the creation of the population (Korte and Farlow 2013). 
However, the use of linkage disequilibrium (LD) to identify 
marker-trait association at the whole genome level has also 
some specific limitations. False positive association (Type I 
error) can easily arise from population structure. In addition, 
though the accumulation of recombination allows for a high-
resolution mapping, it also decreases LD between causal 
mutation and markers, which in turn decreases the power of 
detection for a given number of markers. To deal with these 
major trade-offs, independent markers can be used to assess 
the relative kinship in the panel. This information is then 
used to control Type I error. The power issue can be solved 
by increasing the number of markers which is now possible 
with the use of wheat single nucleotide polymorphism (SNP) 
chips at relatively low cost (Wang et al. 2014).

In GWAS, results are mostly shown using simple Man-
hattan plots and there is no widespread method to well 
define associated chromosomal regions. Indeed, in a panel, 
the link between linkage disequilibrium and genetic or 
physical distance is much more complex than in a biparen-
tal population, where methods such as one LOD support 
interval or bootstrapping are commonly used to assess QTL 
confidence interval (e.g. Lander and Botstein 1989; Man-
gin et al. 1994; Visscher et al. 1996). Moreover, in strong 
LD regions, pairwise correlation between significant mark-
ers can approach genotyping accuracy rate. Thus, even 
with methods such as stepwise logistic regression to test 
whether a marker in a given set is necessary or sufficient 
to explain the association signals, finding the one likely 
to be closest to the causal mutation is nearly impossible 
(McCarthy and Hirschhorn 2008). Added to that, in high 
LD regions, the tested marker is correlated to many other 
SNPs that can contribute to the estimation of the kinship 
reducing the power of detection (Rincent et al. 2014). Thus, 
the most significant quantitative trait nucleotide (QTN) 
may not be the closest to the causal mutation. In low LD 
regions, it is possible that only one SNP is significant, and 
there is no simple way to define a region from the relation-
ship of P value (P) with genetic/physical distance. In any 
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case, P value depends on the QTL effect. This biases the P 
value support method of constructing “confidence interval” 
(Mangin et al. 1994). Thus, authors often fix a more or less 
arbitrary window around QTN peaks based on mean LD 
decay, for example, 1 Mb in maize for Tian et al. (2011), 
200 kb in rice for Zhao et al. (2011), or 5 cM in wheat for 
Le Gouis et al. (2012). The method chosen to define an 
associated chromosomal region influences GWAS reliabil-
ity and this issue remains under investigated.

Using 214 European elite varieties, 28 NUE-related traits, 
and 23,603 SNP, this study aimed to (1) estimate the power 
of such an elite panel to perform GWAS with respect to the 
method used to define associated chromosomal regions and 
false positive rate, (2) identify stable chromosomal regions 
involved in NUE-related traits and assess their transfer-
ability to the field, and (3) analyse colocalisations for NUE 
components and NUE-related traits to estimate pleiotropic 
effects associated with QTL-based selection.

Materials and methods

Phenotypic data

Phenotypic data are described in Cormier et al. (2013). 
Briefly, 225 European elite varieties were evaluated in 
eight environments defined as a combination of year, site, 
and nitrogen supply (two seasons, three sites, and two 
nitrogen supplies). The high N treatment corresponded to 
common agricultural practices. The low N treatment cor-
responded to a mean yield reduction of 20 % (Suppl data 
1). Other crop inputs including weed, disease and pest 
control, potassium, phosphate and sulphur fertilisers, were 
applied at sufficient levels to prevent them from limiting 
yield. Plant growth regulators were applied to limit lodg-
ing in all environments. In each environment, 28 traits 
were measured or calculated (Table  1). From adjusted 
means by trial, overall adjusted means by varieties were 

Table 1   Description of measured and calculated traits assessed in all environments for which adjusted means by varieties were calculated on a 
214-lines wheat association panel

* NTAmax and NFAmax are defined as the respective 95th percentile of NTA and NFA (see Cormier et al. 2013)

Trait Description Formula Units HG
2 Mean SD

ABSN Post-anthesis absorption NTA–NFA kg ha−1 0.25 22.7 26.43

ADM_FLO Above-ground dry matter at anthesis kg ha−1 0.69 10,618 2,222.50

ADM_S Straw dry matter at maturity kg ha−1 0.84 7,288 1,861.32

DMGY Dry matter grain yield kg ha−1 0.89 7,400 1,257.49

EFFG Genetic efficiency REMN/GNY % 0.18 82.3 19.85

EFFREMN Remobilization efficiency REMN/NFA 0.27 77.3 7.56

FLO Anthesis date Days (after 1st January) 0.99 149.2 7.12

GNY Grain N yield GPC/5.7 × GY kg ha−1 0.50 127.9 35.44

GPC Grain protein concentration % 0.92 9.93 2.05

GPD Grain protein deviation GPC − a × GY − b % of protein 0.80 0 0.78

HI Harvest index GY/(GY + ADM_S) % 0.88 50.4 5.67

INN_FLO N nutrition index %N_FLO/(5.35 × ADM_FLO/1,000)(−0.442) 0.63 0.69 0.19

NFA N at anthesis ADM_FLO × %N_FLO kg ha−1 0.16 138 48.82

NHI N harvest index GNY/NTA % 0.63 81.1 5.71

NSA Straw N per area ADM_S × %N_S kg ha−1 0.50 30.4 14.17

NTA total N per area NSA + GNY kg ha−1 0.41 158 45.03

NUE N use efficiency GY/NTAmax* kg DM kg−1 N 0.87 37.8 7.69

NUE_Prot N use efficiency to protein GPC/NTAmax* % protein kg−1 N ha−1 0.90 0.05 0.01

NupEFlo N uptake at anthesis NFA/NFAmax* % 0.15 0.76 0.12

NupEMat N uptake efficiency at maturity NTA/NTAmax* % 0.37 0.78 0.08

NutE N utilisation efficiency GY/NTA kg DM kg−1 N 0.87 48.8 11.19

NutE_Prot N utilisation efficiency to protein GPC/NTA % protein kg−1 N ha−1 0.89 0.07 0.01

PH Plant height cm 0.95 76.6 8.43

REMN N remobilization NFA–NSA kg ha−1 0.25 109 39.21

SA Spikes per area nb spike m−2 0.85 412 78.83

TKW 1,000-kernel weight g 0.96 42.4 4.11

%N_FLO N concentration at anthesis % 0.80 1.29 0.34

%N_S Straw N concentration at maturity % 0.77 0.42 0.13
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computed using a simple linear model with environment 
and genotype as fixed effects. These values were used in 
the GWAS. Generalised broad-sense heritabilities (HG

2) 
were calculated using the formula proposed by Cullis et 
al. (2006) from the previous linear model with genotype 
as a random effect.

Genotyping and consensus map

Of the 225 varieties present in field trials, 214 were gen-
otyped. SNP data consisted of a subset of SNP from an 
Illumina 90 K chip (Wang et al. 2014) together with SNP 
developed by Biogemma. Heterozygous loci were consid-
ered as missing data. Loci with a minor allele frequency 
inferior to 0.05 or loci which had available data for less 
than 150 varieties were not used. In total, we used 23,603 
mapped SNP in this study.

We built a consensus map with the Biomercator software 
(Arcade et al. 2004). We used the map published by Le 
Gouis et al. (2012), based on Somers et al. (2004), as a ref-
erence. This map contains SSR and DArT markers, and the 
location of several major genes (Vrn, Ppd, Rht). SNP was 
projected on it, from non-published maps containing 535 
markers in common with this reference map. The Strudel 
software was used to check map alignments (Bayer et al. 
2011) and mapping errors were corrected.

Linkage disequilibrium

We used the r2 estimator (Hill and Robertson 1968) to 
assess linkage disequilibrium (LD). LD was calculated 
for every pair of markers mapped on the same chromo-
some, and then r2 was plotted against map distance. For 
every chromosome, LD decay (cM) is estimated at the 
point where a curvilinear function proposed by Hill and 
Weir (1998) intersects the threshold of the critical LD. 
Critical LD was the 95th percentile of the unlinked-r2 
assessed on 100,000 randomly chosen pairs of unlinked 
loci (mapped on different chromosomes) which were 
square root transformed to approximate a normally 
distributed random variable (Breseghello and Sorrells 
2006).

Association mapping study

Following Patterson et al. (2006), we did not find any struc-
ture in this 214-varieties panel. Indeed, the largest eigen-
value was not significant (P  =  0.043). Thus, we tested 
SNP-trait association using a mixed model K (Yu et al. 
2006) written in R using the ASReml-R package (Butler et 
al. 2009) and expressed as:

y = 1µ + Sα + Zu + ε

where y is a vector of estimated genetic values, 1 is a vec-
tor of 1’s, μ is the intercept, α is the additive effect of 
the tested SNP, u is a vector of random polygenic effects 
assumed to be normally distributed N(0, σ 2

y K) with K a 
matrix of relative kinship, S and Z are incidence matrices, ε 
is a vector of residual effects.

K was estimated as 1(n × n) − Rdist where Rdist is the 
modified Rogers’ distance (Rogers 1972) matrix based on 
3,461 SNP spread over the genome and with less than 0.1 
missing data and 1(n × n) is a matrix of 1’s of the same 
size as the Rdist matrix (n = 214).

To summarise, we tested 23,603 SNP on 28 traits using 
the adjusted means of 214 European elite varieties. There is 
no widespread method to define QTL boundaries from GWAS 
results. So, we proceeded as follows. First, for each trait, we 
computed LD between every significantly associated SNP 
(quantitative trait nucleotide—QTN). LD blocks were defined 
as a group of QTN belonging to the same LD cluster (clus-
tering by average distance) using a cutoff of (1-“critical LD”). 
We define the initial QTL boundaries as the minimum and 
maximum map position of QTN belonging to the same LD 
block. Then, as previously described, we assessed LD between 
every mapped SNP within a window covering 10  % of the 
chromosome length and centred on each QTL. We used the 
LD decay to extend the previous boundaries. This second step 
aimed to take into account possible LD with the causal muta-
tion at the first QTL boundaries (for detail Suppl data 2). We 
only defined QTL for LD blocks containing SNP mapped on 
the same chromosome. For each trait, QTL with overlapping 
boundaries were considered the same if the alleles increasing 
the trait value at each were themselves correlated positively.

Phenotype simulation and power

The statistical power provided by the panel was evaluated 
through simulation studies where −log10(P) thresholds, 
narrow-sense heritability and variance explained by a SNP 
were the three modulated parameters. We set −log10(P) 
threshold at 3, 4, 5, 6; narrow-sense heritability (h2) at 
0.3, 0.6, and 0.9; and variance explained by the SNP (π) at 
0.010, 0.030, 0.050, 0.075, 0.100, 0.150, and 0.200.

Phenotypes were simulated as follows:

where yi is the simulated phenotype of the variety i, gi is 
the genetic additive background effect of variety i, aij the 
additive effect at the quantitative trait nucleotide (QTN) j of 
variety i allele, and εi a residual error term sampled from a 
normal distribution N(0, σε2).

First, k = 100 SNP were chosen to simulate the genetic 
background effect. This selection is made by forming 
k-means cluster based on the genotyping incidence matrix 
and selecting the SNP nearest the centroid of each cluster 

(1)yi = gi + aij + εi
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(Lorenz et al. 2010). Thus, if gi is the genetic background 
effect of variety i:

with a′ik the effect of the variety i allele at the locus k.
Narrow-sense heritability (h2) is defined by:

where σj2 the genetic variance related to QTN j different 
from k, σg2 the variance related to the genetic background, 
and σT2 the total variance.

The variance explained by QTN j (π) is defined by:

Total variance (σT2) is deduced from Eqs. (3) and (4) as 
h2 and π are fixed in each simulation study:

Given the percentage of variance explained by QTN 
j (π), its additive effect (aj) is calculated by Falconer and 
Mackay (1996) as:

with pj the allele frequency of the reference allele at locus j. 
Thus, if variety i allele at QTN j was the reference allele, aij 
from Eq. (1) was equal to aj, else aij was equal to −aj.

Finally, the variance of the residual error term (σε2) was 
computed as:

In total, 400 SNP were randomly chosen to play in turn 
the role of the QTN j with j ≠ k (QTN ≠ genetic background 
effect) for each pair of h2 and π parameter values. The sta-
tistical model used to detect associations between SNP and 
simulated phenotypes was the previously described model 
K. In the same way, QTL were defined following the two 
steps already described. Detection power was estimated by 
the ratio of the number of times a true QTN was located in 
the computed QTL to the total number of tests. The SNP 
selected as being the true QTN j was not tested per se.

Prediction

The percentage of total variance explained by each sig-
nificant SNP was first assessed for each trait using a 

(2)gi =

k=100
∑

k=1

a′

ik , a′

ik =

{

1

0

(3)h2
=

σg2
+ σ j2

σT2

(4)π =
σ j2

σT2

(5)σ 2
=

σg2

h2 − π

(6)aj =

√

π × σT2

pj

(

1 − pj

)

(7)σε2
=

(

1 − h2
)

× σT2

simple regression of overall adjusted mean on the SNP 
(r2

snp). Then, for each trait, the predicted values of varieties 
were estimated by summing the allele effects assessed in 
GWAS at associated loci. To avoid redundancy, only one 
SNP per LD block was kept; that which explained the most 
variance.

This model was first used to predict overall adjusted 
means. It was then used to predict adjusted means in each 
of the eight individual environments. Consequentially, we 
computed two types of correlations (r2): the correlation 
between predicted values and overall adjusted means (r2

adj), 
and the correlation between predicted values and each of 
the eight individual environments (r2

env).
To assess transferability of GWAS results to field trials, 

we calculated a prediction similarity [mean(r2
env)/r

2
adj] that 

we plotted as a function of trait heritability.

Colocalisation and network approach

To assess the impact of genetic correlation and pleiotropy, 
we analysed colocalisations through a network approach. 
QTL colocalisation between two traits were statistically 
tested using the probability of an hypergeometric law 
(“sampling without replacement”; Larsen and Marx 1985) 
with the total cumulative length of QTL for trait i and trait 
j and the total map length as parameters of the hypergeo-
metric distribution. The cumulative length of QTL shared 
by trait i and j was the parameter of the probability. A fairly 
stringent threshold of P = 0.001 was set as the criteria of 
significance.

On the basis of significant colocalisations, inter-trait 
relationships were then studied through a network approach 
using traits as nodes and the percentage of one trait QTL 
overlapping another trait QTL as edges. Betweenness cen-
trality was computed on each node following Opsahl et al. 
(2010) method with α =  0.5 to equally take into account 
the number of edges and edges’ weights in the calculation. 
To statistically test trait betweenness centralities values, 
this network was then permuted 500 times to assess the 
empirical distribution of betweenness centrality, and thus 
determine the statistical law underlying this distribution.

Results

Genetic map and linkage disequilibrium

The consensus genetic map obtained had a total length of 
3,167  cM. To finely map QTL, LD has to decay rapidly 
and SNP density has to be high to ensure that at least one 
SNP is linked to the causal mutation. While diversity level 
is similar in the A and B genomes, it is greatly reduced 
in the D genome (Cadalen et al. 1997), contributing to its 
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higher levels of LD. Indeed, mean LD decay on genome 
A, B, and D was, respectively, 0.52, 0.70, and 2.14 cM. LD 
decay is the estimated distance from which two SNP are 
not genetically linked, meaning that their LD (r2) is inferior 
to the critical LD. Critical LD was estimated from a sample 
of 100,000 pairs of unlinked SNP which revealed a mean 
unlinked-r2 of 0.016 and a critical LD (95th percentile) of 
0.23.

A rapid LD decay predicts a good mapping resolution in 
GWAS. Though as previously mentioned, it can decrease 
power if SNP density is not sufficient. SNP density ranged 
from 0.7 cM−1 for chromosome 4D to 14.6 cM−1 for chro-
mosome 7A (Table 2). On genomes A and B, SNP density 
seemed sufficient with respect to LD decay. On genome 
D, the lower SNP density may be compensated for by the 
higher LD, but QTL will be less precisely defined.

Power assessment

Choosing a P value threshold has to balance the control 
of Type I error (false positive) with Type II error (false 
negative). Considering power simulation and the expecta-
tion of small-effect QTN, a −log10(P) threshold of 3 was 

adopted as a criterion for significant marker-trait associa-
tions. Indeed, a more stringent threshold inflated Type II 
error and thus reduced extremely the power of detection, 
notably on QTN explaining less than 10 % of the variance 
(Fig. 1). At a QTN heritability of 5 % and a narrow-sense 
heritability of 0.6, power was dramatically reduced from 
55 % to 7 % when −log10(P) threshold increased from 3 
to 6 (Fig. 1).

At a −log10(P) score threshold of 3, when the genetic 
variance explained by the locus was greater than 10  %, 
trait heritability did not affect power, and Type II error was 
reduced. In general, the variance explained by the QTN 
was the main factor that influences the power of the study 
as compared to trait narrow-sense heritability. It should be 
noted that with a weakly stringent threshold of 3, the power 
to detect an association for a QTN, which explained 5 % of 
the total genetic variance, was 48, 55, and 60 %, for a trait 
narrow-sense heritability of 0.3, 0.6, and 0.9, respectively.

GWAS results

Overall, 1,010 SNP were significantly associated (QTN) 
to at least one of the 28 studied traits. Considering QTN, 
LD blocks and LD around associated regions, 333 QTL 
were mapped with a mean size of 3.2 cM. Ninety percent 
(between the 5th and 95th percentile) of QTL had a range 
within 0.1–14 cM indicating that the method used to define 
QTL is mostly efficient. In few cases, the assessments of 
LD decay in the chromosomal region containing QTN may 

Table 2   SNP used in association: number of mapped SNP, coverage 
on the consensus map, SNP density and LD decay at a critical LD 
r2 =  0.23. Critical LD was assessed as in Breseghello and Sorrells 
(2006)

Chr SNP Coverage (cM) SNP density (cM−1) LD decay (cM)

1A 1,246 110.4 11.3 0.49

1B 2,055 128.5 16 0.19

1D 430 121.7 3.5 2.71

2A 1,454 262.7 5.5 1.39

2B 2,362 205.8 11.5 0.70

2D 402 130.9 3.1 0.80

3A 1,151 155.1 7.4 0.68

3B 1,972 147.8 13.3 0.05

3D 253 104.7 2.4 1.07

4A 786 123.4 6.4 0.21

4B 849 143.3 5.9 0.70

4D 97 139.7 0.7 2.43

5A 1,604 186.1 8.6 0.32

5B 2,243 262.4 8.5 2.19

5D 327 115.6 2.8 0.94

6A 1,588 122.0 13 0.19

6B 1,603 115.0 13.9 0.05

6D 254 136.8 1.9 1.02

7A 1,782 122.2 14.6 0.38

7B 1,034 198.5 5.2 1.06

7D 246 134.9 1.8 6.00

Total 23,603 3,167.5 7.5 1.12

Fig. 1   Influence of trait heritability and −log10(P value) threshold 
on the relation between locus heritability and power of detection in a 
214-lines wheat association panel. In red, green, blue, violet, respec-
tive LOD score thresholds are 3, 4, 5, and 6. Square, triangle, and 
circle represent a respective narrow-sense heritability of 0.9, 0.6, 0.3
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not correctly fit and QTL boundaries must be used with 
caution.

In agreement with SNP density and the genetic diversity, 
the number of QTL on genome D (42) was smaller than 
on genome A (142) and B (149). Homeologous group 2 
maximised the number of QTL with 73 QTL. The number 
of QTL by trait ranged from 6 for NutE to 21 for %N_S 
(Table 3).

Predictions

First, we assessed the variance explained by each sig-
nificant SNP (QTN). Then, we predicted overall adjusted 
means and each of the eight environments’ adjusted means. 
On average, QTN explained 8.81  ±  4.79  % of the over-
all adjusted means (r2

snp). On overall adjusted means, the 
best prediction (r2

adj) was made on HI (Table 4). Using 20 
SNP, we were able to explain 61.4 % of the genetic vari-
ation. Using 15 SNP on NUE, we were able to explain 
55.7 % of the overall adjusted mean variation (Fig. 2) and 
29.7  ±  4.9  % of the individual environment’s variation 
(Table 4). On the environments’ data (r2

env), flowering date 
was the best predicted trait with 55.3  % of the variation 
explained on average.

Differences between predictions made on overall 
adjusted means (r2

adj) and predictions on individual envi-
ronment values (r2

env) resulted from genotype  ×  environ-
ment interactions. Thus, it was linked to trait broad-sense 
heritability. In fact, the transferability of our GWAS results 
to environmental values was exponentially proportional 
to trait broad-sense heritability (Fig.  3). This means that 
GWAS results became rapidly powerless to predict pheno-
typic values as broad-sense heritability decreased.

Colocalisation network

Altogether, the QTL covered 20  % (646/3,167) of the 
genetic map. There were colocalisations for 39  % of the 
QTL identified. Major regions of colocalisation were on 
chromosomes 1B, 2B, and 7A (Suppl data 3). Considering 
NUE and its two components, N uptake and N utilisation, 
there was no common QTL between NupEMat and NUE, 
but two NutE QTL (out of six) colocalised with NUE QTL 
and acted in the same way on both traits. NUE QTL (9/14) 
which colocalised with NutE_Prot QTL had opposite 
effect on these traits. By comparing QTL for the N uptake 
efficiency at flowering time (NupEFlo) and at maturity 
(NupEMat), we found that only one QTL was in common 
between these two traits.

Figure 4 provides a visual representation of the frequen-
cies of QTL colocalisations. Using a bootstrap procedure 
with 500 permutations, it was assessed that the empiric 
betweenness centrality followed a gamma distribution 

(shape =  2.169, rate =  0.079; Suppl data 6). This distri-
bution was used to test trait betweenness centrality. Four 
traits had a significant (P < 0.05) high betweenness central-
ity: INN_FLO, FLO, NutE, %N_Flo were ordered from the 
most significant to the less significant. We should notice 
that INN_FLO, %N_S, and FLO were not independent 
as we detected four chromosomal regions of colocalisa-
tions between these three traits. Two of them affected the 
three traits in the same ways. Two of them acted oppositely 
between FLO and the two other traits. All common QTL 
between %N_Flo and INN_FLO affected both traits in the 
same way.

Discussion

QTL definition and power

In most studies, authors fixed a window around QTN peaks 
often based on linkage disequilibrium to define associated 
chromosomal regions in GWAS. However, massive varia-
tion of LD exists along the chromosomes in wheat (Wür-
schum et al. 2013). In this study, we suggested a method 
based on LD between QTN and LD within the chromo-
somal region of interest and assessed its power of detec-
tion. This method had the advantage of being based on LD 
decay in the chromosomal region of interest. Moreover, 
authors focus on P value methods (ad hoc and post hoc) 
to control false positive rate, although the way they design 
their associated region influences it. Indeed, linkage dis-
equilibrium between causal mutations and associated SNP 
or mapping error can lead to the construction of a chromo-
somal region which does not contain the causal mutation 
even though the SNP-trait association was real.

Regarding power simulation and error type II, we chose 
a −log10(P) threshold of 3 to validate SNP-trait associa-
tions. Our real false positive rate (error type I) was not only 
influenced by this −log10(P) threshold. Indeed, in our real 
error Type I, we should consider all QTL which did not 
contain the causal mutation whether the SNP-trait associa-
tion was real or not. Using the results of the power simula-
tion studies, we estimated our real false positive rate at 7 % 
(for a QTN heritability between 5 and 10 %; Suppl data 2). 
If we had chosen a −log10(P) threshold of 6, it would have 
been 3 %. Thus, increasing P value threshold reduced real 
error Type I for small-effect QTN yet drastically decreased 
power (Fig.  1). Moreover, for QTN with a heritability 
>10 %, a P value threshold superior to 3 slightly increased 
the real error Type I due to smaller QTL (Suppl data 2).

In GWAS, the real issue to control error Type I is not in 
the definition of a stringent P value threshold. It is in the 
development of a powerful method to define QTL bound-
aries, particularly in the case of GWAS oriented to gene 
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discovery. This field has practically never been investi-
gated and publications mainly focus on P value. We advo-
cate balancing QTL coverage, real error Type I, and power 
altogether. An improvement of our methods could be to 
adapt the construction of the associated region to QTN 
heritability.

Power, locus heritability, and genetic determinism

The fraction of total genetic variance explained by a 
single significantly associated SNP (QTN) averaged 
8.81  ±  4.79  % which is coherent regarding the simula-
tion study. Indeed, the power started to be maximised 
from a locus heritability of 10  % (at a −log10(P) thresh-
old = 3, Fig. 1). Yet variability existed and fraction of total 
genetic variance ranged from GPC (14.0 ± 8.7 %) to NHI 
(5.3 ± 2.9 %).

When numerous QTN explained a small fraction of 
genetic variance, we can presume that the GWAS study 
was powerful and that the genetic determinism underly-
ing this trait is highly polygenic. When QTN have larger 
locus heritability, the cause can be a less polygenic 
genetic determinism and/or a lack of power due to low 
narrow-sense heritability. Narrow-sense heritability esti-
mates the proportion of additive variance on total vari-
ance (Falconer and Mackay 1996). Thus, narrow-sense 
heritability is also linked to the importance of epistasis 
in the trait genetic architecture. In this study, we have 
not searched for epistasis. However, several studies have 
highlighted its impact. For example, GPC is controlled 
by major protein concentration genes (Payne 1987; 
Uauy et al. 2006; Avni et al. 2013) and significant inter-
actions between them (Dumur et al. 2004; Conti et al. 
2011; Plessis et al. 2013). Another example is epistatic 

Table 4   Summary of GWAS 
results predictions made by 
SNP (r2

snp) and using the sum 
of SNP effect on both overall 
adjusted mean (r2

adj) and on 
eight individual environments 
(r2

env). To avoid redundancy, for 
each LD block, the SNP which 
maximised the genetic variance 
explained was selected

a  SNP number can differ 
from QTL number in Table 3 
when LD blocks contained 
SNP mapped on different 
chromosomes (as no QTL was 
defined but one SNP was used 
in prediction)

Trait SNPa Prediction on adjusted means Prediction on indi-
vidual environments

r2
snp (%) r2

adj (%) r2
env (%)

Mean SD Mean SD

ABSN 14 6.0 0.9 37.7 6.9 3.3

ADM_FLO 13 6.9 4.4 40.9 18.5 13.1

ADM_S 17 6.5 3.8 52.8 27.7 4.2

DMGY 12 11.5 9.0 53.6 30.8 6.2

EFFG 20 6.1 1.0 42.3 7.0 3.6

EFFREMN 13 7.5 1.7 40.4 8.4 4.4

FLO 20 8.6 6.5 58.5 55.3 2.6

GNY 11 7.3 2.9 40.0 9.9 5.7

GPC 10 14.0 8.7 57.5 37.9 10.8

GPD 8 7.8 3.9 33.7 15.6 5.1

HI 20 8.6 6.4 61.4 32.4 4.3

INN_FLO 8 11.5 4.3 40.0 12.8 10.5

NFA 13 6.3 2.3 34.2 5.7 5.2

NHI 11 5.3 2.9 37.2 10.9 5.8

NSA 15 6.3 3.4 38.2 9.7 5.2

NTA 9 8.1 3.0 32.0 7.0 6.1

NUE 15 8.7 7.2 55.7 29.7 4.9

NUE_Prot 11 12.4 8.8 59.7 35.5 11.5

NupEFlo 9 7.4 3.0 27.7 5.2 5.6

NupEMat 11 6.4 2.9 31.4 6.9 4.3

NutE 6 8.7 6.4 38.3 23.2 9.1

NutE_Prot 18 10.1 8.7 59.8 34.4 7.4

PH 17 10.5 4.9 48.6 37.0 16.0

REMN 12 6.3 1.4 28.3 4.8 3.5

SA 12 7.4 3.8 41.0 22.1 8.1

TKW 10 8.1 2.9 39.0 32.3 3.6

%N_FLO 10 11.4 6.9 45.5 20.3 8.6

%N_S 21 8.3 4.4 57.8 25.8 13.5
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contribution in the genetic control of PH is important 
as revealed by Novoselovic et al. (2004), Zhang et al. 
(2008), and Wu et al. (2010). Using a doubled haploid 

wheat population, Zhang et al. (2008) estimated first-
order epistatic contribution up to 19.9 % of the PH phe-
notypic variation.

Fig. 2   Prediction of NUE 
values as a function of overall 
adjusted mean for 214 wheat 
lines. Predictions were made 
summing the effects of 15 sig-
nificantly associated SNP. The 
following regression function is 
also plotted: y = 0.86x + 2.66 
(r2 = 0.56; P < 0.001)

Fig. 3   Prediction similarity (r2
env/r

2
adj) between predictions made on 

overall adjusted means (r2
adj) and the ones made on individual envi-

ronment’s values (r2
env) as a function of generalised heritability (HG

2) 
of 28 traits. Means (diamond), standard deviations (whisker). Mean 
(r2

env/r
2
adj) = −0.39eH

2

G (r2 = 0.88; P < 0.001)

Fig. 4   Network of QTL colocalisations for 28 traits measured on a 
214-lines wheat association panel. This network is based on the per-
centage of common QTL between traits after correction using a hyper-
geometric law to determine significant colocalisations (P  <  0.001). 
Link thickness is function of the percentage of common QTL, from 
5 % for the thinnest to 100 % for the thickest (values in Suppl data 5)
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Authors have often focused on epistatic interactions 
between SNP having a significant additive effect. However, 
epistatic interactions between SNP without additive effect 
can also explain genetic variability (Huang et al. 2014) as 
detected for heading date (Le Gouis et al. 2012). Nonethe-
less, whole genome scan for epistasis is a real computa-
tional and analytic challenge, which will surely help path-
ways mining (Philipps 2008; Mackay 2014).

Candidate genes and comparison with previously published 
QTL

Altogether, we detected 333 QTL on 28 traits. Significant 
colocalisations (QTL boundaries overlapping) between 
some of them and candidate genes or previously published 
QTL deserve to be pointed out. Regarding major genes for 
precocity, only the photoperiod sensitivity gene Ppd-D1 on 
chromosome 2D colocalised with QTL of FLO, HI, INN_
FLO, %N_FLO, %N_S, affecting all these traits in the same 
way (late genotype have higher HI, INN_FLO,  %N_FLO, 
and %N_S). Ppd-D1 also colocalised with an ADM_S 
QTL, with an opposite effect. Two factors can explain that 
Vrn genes were not associated to precocity: (1) this panel 
contains only winter wheat varieties and (2) only autumn 
trials were sown with vernalization requirements fulfilled.

On chromosome 4D, the dwarfing gene Rht-D1 (Rht2) 
was tested and had an expected significant effect on PH and 
ADM_S.

Similarly, the three closely mapped genes coding the 
glutenins and gliadins (Glu3A, Glu3B, and Gli) not surpris-
ingly colocalised with QTL of NUE and NutE_Prot located 
on chromosome 1A. Moreover, the structural gene for high 
molecular weight glutenins GluD1 located on chromosome 
1D lay within the boundaries of QTL affecting GNY, NTA, 
and NupEMat.

Several genes from the N assimilation pathway have 
already been associated to NUE QTL including the genes 
coding for glutamate synthase (NADH-Gogat) located in 
QTL on chromosome 3A, and 3B (Quraishi et al. 2011). 
On chromosome 3A, this colocalised with QTL of NFA, 
NupEFlo, and %N_S. On chromosome 3B, the NADH-
Gogat gene colocalised with QTL of NUE_Prot, GPC, 
and ABSN. The gene for glutamine synthetase GS1 on 6A 
(Habash et al. 2007) colocalised with a cluster of QTL for 
EFFREMN, GPD, NutE_Prot, DMGY, and %N_S. Sev-
eral publications already mentioned this region as affect-
ing grain number per ear (Habash et al. 2007; Quarrie  
et al. 2005), NupEMat (An et al. 2006; Xu et al. 2013), root 
dry weight (An et al. 2006), %N_S and DMGY (Xu et al. 
2013).

On chromosome 4B, a QTL of %N_S colocalised 
with numerous previously published QTL of nitrogen 
efficiency-related trait (An et al. 2006; Guo et al. 2012), 

glutamate dehydrogenase and glutamine synthase activ-
ity (Fontaine et al. 2009), harvest index (Xu et al. 2013), 
ears, spike, and grain-related trait (Quarrie et al. 2005; 
Habash et al. 2007; Laperche et al. 2007; Fontaine et al. 
2009), and root morphology (Laperche et al. 2006). Previ-
ously published results were in part due to the presence of 
Rht-B1 (Rht1) in this chromosomal region. In our case, a 
diagnostic marker for Rht-B1 was tested and no significant 
effect was detected for any trait most probably because of 
the unbalanced allele frequencies of the combination of 
Rht-B1 and Rht-D1 (0.05, 0.65, 0.18, and 0.12 for the four 
allelic classes Rht-B1b/Rht-D1b, Rht-B1b/Rht-D1a, Rht-
B1a/Rht-D1b, and Rht-B1a/Rht-D1a). The glutamine syn-
thetase gene GSe (Habash et al. 2007) mapped using the 
SSR gpw7026 (Sourdille et al. 2004; Fontaine et al. 2009) 
was also within this QTL confidence interval and may be a 
good candidate gene to investigate.

On chromosome 2A, the Rbcs (Xpsr109) gene for the 
small subunit of the chloroplast photosynthetic enzyme rib-
ulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) 
was located in a %N_S QTL, and has already been shown to 
colocalise with a QTL for N grain concentration (Laperche 
et al. 2006), and from a meta-QTL analysis on yield and 
yield-related traits (Zhang et al. 2010). Considering the small 
size of this QTL in this study (1.6 cM), and the link between 
N remobilisation and Rubisco subunit expression and deg-
radation (Hörtensteiner and Feller 2002; Gregersen et al. 
2008), Rbcs has to be considered as a good candidate gene.

Further investigations are needed on two promising 
regions where no obvious candidate genes were found 
within QTL boundaries. On chromosome 5B (gwm67-
BCD351), a region linked to the INN_FLO colocalised 
with QTL previously published by Fontaine et al. (2009) 
on carbon percentage in flag leaf, and Habash et al. (2007) 
on nitrogen percentage in peduncle. As the nitrogen nutri-
tion index (INN) refers to the minimum N concentration 
enabling maximum biomass growth (Justes et al. 1994), 
this confirms the effect of this region on nitrogen/carbon 
balance before remobilisation. On chromosome 7B (wPt-
3530-wPt-7113), Laperche et al. (2007) published a QTL 
of %N_S which colocalised with one of this study affecting 
the same trait. This region also appeared in Laperche et al. 
(2006) as being linked to the lateral root number and the 
primary root length, and in Habash et al. (2007) for GNC.

Breeding strategies

As we worked on a panel composed of commercial vari-
eties mostly registered between 1985 and 2010, results of 
this study have to be discussed in light of selection pres-
sures. Although QTL have been detected, if favourable 
alleles are already fixed in the more recent varieties, those 
QTL are not so useful in future breeding.
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As expected, favourable alleles are more frequent in 
recent varieties for QTL affecting traits under a high selec-
tion pressure than on QTL affecting untargeted traits. We 
estimated a positive correlation (P  <  0.001; r2  =  0.48) 
between the frequencies of alleles having a positive effect 
(in varieties released from 2005) and genetic progresses 
assessed by Cormier et al. (2013). Cormier et al. (2013) 
showed that in this panel of European elite varieties, NUE 
was increased by improving N utilisation (NutE: +0.20 % 
year−1) and remobilisation (NHI: +0.12 % year−1; %N_S: 
−0.52 % year−1) through a major positive selection pres-
sure on grain yield (DMGY: +0.45 % year−1), while main-
taining constant N uptake. In agreement, we found that for 
DMGY QTL, NutE QTL, and %N_S QTL, the median 
frequency of favourable alleles (in varieties released from 
2005) was, respectively, 88, 68, and 79 % (Suppl data 7). 
Moreover, for a given trait, the frequency of alleles hav-
ing a positive effect in recent varieties is directly linked 
to the genetic correlation between this trait and DMGY 
(P  <  0.001; r2  =  0.49; Suppl data 7). Thus, favourable 
alleles are already well represented in new varieties at QTL 
associated to traits directly (e.g. DMGY) or indirectly (e.g. 
NutE) targeted by breeding. This study has provided infor-
mation to facilitate their monitoring.

Studying correlations between traits using QTL colocalisa-
tions rather than genetic correlations has the advantage of tak-
ing into account trait genetic architecture and the power with 
which we can dissect them. Moreover, it gives a better esti-
mation of the pleiotropic effect of QTL-based selection on a 
trait. Indeed, the genetic correlation is symmetric (ra/b = rb/a), 
contrary to the percentage of QTL colocalising between two 
traits. For example, based on our detection, selection on GPC 
QTL will surely affect NUE_Prot as all GPC QTL are also 
NUE_Prot QTL. However, only 73 % of QTL for GPC would 
be affected by selection on NUE_Prot QTL.

Results of colocalisation analyses revealed that we 
should select on INN_FLO, FLO, NutE, and %N_Flo QTL 
to maximise the number of affected traits. As 57 % (4/7) of 
INN_FLO QTL and 50 % (4/8) of % N_Flo QTL were also 
FLO QTL, effect of phenology and pre-anthesis uptake are 
mixed. Thus, QTL controlling flowering time should be 
our first concern. Anthesis corresponds to a physiological 
transition and consequently, the date of this transition has 
a major impact on genotype × environment (G × E) inter-
action (Kamran et al. 2014). In this study, we observed an 
average genotypic flowering time standard deviation of 
7 days. As varieties were tested in a small range of slightly 
contrasted environments, anthesis date directly affected 
G × E interaction and above all varieties’ genetic values, 
favouring genotypes adapted to these environments. This 
created a confounding effect of major phenology genes 
(Reynolds et al. 2009) which are more likely to be associ-
ated to agronomic traits.

None of the central traits (INN_FLO, FLO, NutE, and 
%N_Flo; Fig.  4) was linked to final N uptake. As men-
tioned before, recent breeding efforts improved N remo-
bilisation and N utilisation, and not N uptake (Cormier 
et al. 2013). Thus, selection pressure enhanced N utilisa-
tion centrality in our network (Fig.  4). In this panel, the 
low genetic variance of the N uptake was not sufficient to 
reveal meaningful correlations with other agronomic traits 
and thus significant QTL colocalisations. Nevertheless, as a 
component of NUE, N uptake is a promising lever of action 
(Hirel et al. 2007; Foulkes et al. 2009). This study has pro-
vided tools to start selecting for N uptake in elite varieties 
without fastidious phenotyping or can be used as an entry 
point in investigating genes and pathways controlling this 
trait (Korte and Farlow 2013) with further investigations in 
a more diverse panel.

Results on QTL colocalisations highlighted the impor-
tance of focusing on pre-anthesis nitrogen status, espe-
cially on INN_FLO which had a good heritability (0.63) 
and for which QTL have also the same effect on TKW and 
NUE_Prot.

Conclusions

Identification of chromosomal regions associated with 
nitrogen use efficiency-related traits at both high N lev-
els and moderate N will help breeding for better adapted 
varieties. To our knowledge, this work is the first published 
study that reports GWAS results on N use efficiency in 
small grain cereals using a high marker density for precise 
mapping of genomic regions. Using an LD-based method 
to define QTL boundaries, 333 QTL were identified on 28 
traits. Several colocalisations between our QTL and previ-
ously published QTL were pointed out. Using a network 
approach on colocalisation frequencies between traits, this 
study highlighted the interest of working on N status at 
flowering, and underscores the effect of recent breeding on 
N utilisation efficiency.
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